Square at Singular Cardinals

Ryan Holben

February 23rd, 2013 Department of Mathematics University of California Irvine

Logic in Southern California Meeting

Overview

1 Set Theory Basics

- Introduction
- Basics
- Large Cardinals

2 Singular Cardinal Combinatorics

- Motivation
- Square and other principles

3 Results

- First result
- Second result
- Future work

Introduction Basics Large Cardinals

Introduction

- We study infinitary combinatorial principles at singular cardinals.
- Our goal is to narrow down the consistency strengths of these principles.
- Current upper bounds on consistency strengths are very high.
- We use the method of forcing combined with certain promising smaller large cardinals to lower these upper bounds greatly.

A D b 4 A

Introduction Basics Large Cardinals

Introduction

- We study infinitary combinatorial principles at singular cardinals.
- Our goal is to narrow down the consistency strengths of these principles.
- Current upper bounds on consistency strengths are very high.
- We use the method of forcing combined with certain promising smaller large cardinals to lower these upper bounds greatly.

Introduction

- We study infinitary combinatorial principles at singular cardinals.
- Our goal is to narrow down the consistency strengths of these principles.
- Current upper bounds on consistency strengths are very high.
- We use the method of forcing combined with certain promising smaller large cardinals to lower these upper bounds greatly.

Introduction

- We study infinitary combinatorial principles at singular cardinals.
- Our goal is to narrow down the consistency strengths of these principles.
- Current upper bounds on consistency strengths are very high.
- We use the method of forcing combined with certain promising smaller large cardinals to lower these upper bounds greatly.

Introduction Basics Large Cardinals

Ordinal numbers Definition

Definition

A set α is an **ordinal number** iff it is transitive and well-ordered by \in . We will denote the proper class of all ordinals by *On*.

- Ordinal numbers are sets to which well-ordered linear orderings are order-isomorphic. They are commonly used for transfinite induction.
- We say that $lpha < eta \longleftrightarrow lpha \in eta$

Introduction Basics Large Cardinals

Ordinal numbers Definition

Definition

A set α is an **ordinal number** iff it is transitive and well-ordered by \in . We will denote the proper class of all ordinals by *On*.

- Ordinal numbers are sets to which well-ordered linear orderings are order-isomorphic. They are commonly used for transfinite induction.
- We say that $lpha < eta \longleftrightarrow lpha \in eta$

Introduction Basics Large Cardinals

Ordinal numbers Definition

Definition

A set α is an **ordinal number** iff it is transitive and well-ordered by \in . We will denote the proper class of all ordinals by *On*.

• Ordinal numbers are sets to which well-ordered linear orderings are order-isomorphic. They are commonly used for transfinite induction.

• We say that
$$lpha < eta \longleftrightarrow lpha \in eta$$

Introduction Basics Large Cardinals

Ordinal numbers Construction

- We build ordinals inductively:
- 0 := Ø
 - α + 1 := S(α), where S(x) = x ∪ {x} is the successor function.
 For A = ⟨α_ξ | ξ < γ⟩ ⊂ On, α = ∪A is an ordinal, and is the supremum/limit of A.
- Two types of ordinals:
 - α is a successor iff $\exists \beta : S(\beta) = \alpha$.
 - α is a limit otherwise.

・ロト ・回ト ・ヨト ・ヨ

Introduction Basics Large Cardinals

Ordinal numbers Construction

- We build ordinals inductively:
- 0 := Ø
 - $\alpha + 1 := S(\alpha)$, where $S(x) = x \cup \{x\}$ is the *successor* function.
 - For $A = \langle \alpha_{\xi} | \xi < \gamma \rangle \subset On$, $\alpha = \bigcup A$ is an ordinal, and is the supremum/limit of A.
- Two types of ordinals:
 - α is a successor iff $\exists \beta : S(\beta) = \alpha$.
 - α is a limit otherwise.

Introduction Basics Large Cardinals

Ordinal numbers Construction

- We build ordinals inductively:
- 0 := Ø
 - $\alpha + 1 := S(\alpha)$, where $S(x) = x \cup \{x\}$ is the *successor* function.
 - For A = ⟨α_ξ | ξ < γ⟩ ⊂ On, α = ∪A is an ordinal, and is the supremum/limit of A.
- Two types of ordinals:
 - α is a successor iff $\exists \beta : S(\beta) = \alpha$.
 - α is a limit otherwise.

Introduction Basics Large Cardinals

Ordinal numbers Construction

- We build ordinals inductively:
- 0 := Ø
 - $\alpha + 1 := S(\alpha)$, where $S(x) = x \cup \{x\}$ is the *successor* function.
 - For $A = \langle \alpha_{\xi} | \xi < \gamma \rangle \subset On$, $\alpha = \bigcup A$ is an ordinal, and is the supremum/limit of A.
- Two types of ordinals:
 - α is a successor iff $\exists \beta : S(\beta) = \alpha$.
 - α is a limit otherwise.

Introduction Basics Large Cardinals

Ordinal numbers Construction

- We build ordinals inductively:
- 0 := Ø
 - $\alpha + 1 := S(\alpha)$, where $S(x) = x \cup \{x\}$ is the *successor* function.
 - For $A = \langle \alpha_{\xi} | \xi < \gamma \rangle \subset On$, $\alpha = \bigcup A$ is an ordinal, and is the supremum/limit of A.
- Two types of ordinals:
 - α is a successor iff $\exists \beta : S(\beta) = \alpha$.
 - α is a **limit** otherwise.

Introduction Basics Large Cardinals

Ordinal numbers Construction

- We build ordinals inductively:
- 0 := Ø
 - $\alpha + 1 := S(\alpha)$, where $S(x) = x \cup \{x\}$ is the *successor* function.
 - For $A = \langle \alpha_{\xi} | \xi < \gamma \rangle \subset On$, $\alpha = \bigcup A$ is an ordinal, and is the supremum/limit of A.
- Two types of ordinals:
 - α is a successor iff $\exists \beta : S(\beta) = \alpha$.
 - α is a **limit** otherwise.

• □ • • □ • • □ • • • □ • •

Introduction Basics Large Cardinals

Ordinal numbers Construction

- We build ordinals inductively:
- 0 := Ø
 - $\alpha + 1 := S(\alpha)$, where $S(x) = x \cup \{x\}$ is the *successor* function.
 - For $A = \langle \alpha_{\xi} | \xi < \gamma \rangle \subset On$, $\alpha = \bigcup A$ is an ordinal, and is the supremum/limit of A.
- Two types of ordinals:
 - α is a successor iff $\exists \beta : S(\beta) = \alpha$.
 - α is a **limit** otherwise.

• □ • • □ • • □ • • • □ • •

Introduction Basics Large Cardinals

Cardinal numbers

Definition

We say that an ordinal number κ is a **cardinal number** iff it can't be injectively mapped to a smaller ordinal number.

- Cardinals are used to describe the sizes of sets.
- Infinite cardinals are represented by the **aleph numbers** \aleph_{α} .
 - $\aleph_0 = |\omega|$
 - Enumerated by ordinals.

Introduction Basics Large Cardinals

Cardinal numbers

Definition

We say that an ordinal number κ is a **cardinal number** iff it can't be injectively mapped to a smaller ordinal number.

- Cardinals are used to describe the sizes of sets.
- Infinite cardinals are represented by the **aleph numbers** \aleph_{α} .
 - $\aleph_0 = |\omega|$
 - Enumerated by ordinals.

Introduction Basics Large Cardinals

Cardinal numbers

Definition

We say that an ordinal number κ is a **cardinal number** iff it can't be injectively mapped to a smaller ordinal number.

- Cardinals are used to describe the sizes of sets.
- Infinite cardinals are represented by the aleph numbers \aleph_{α} .

Introduction Basics Large Cardinals

Cardinal numbers

Definition

We say that an ordinal number κ is a **cardinal number** iff it can't be injectively mapped to a smaller ordinal number.

- Cardinals are used to describe the sizes of sets.
- Infinite cardinals are represented by the aleph numbers \aleph_{α} .

Introduction Basics Large Cardinals

Cardinal numbers

Definition

We say that an ordinal number κ is a **cardinal number** iff it can't be injectively mapped to a smaller ordinal number.

- Cardinals are used to describe the sizes of sets.
- Infinite cardinals are represented by the aleph numbers \aleph_{α} .

•
$$\aleph_0 = |\omega|$$

• Enumerated by ordinals.

Introduction Basics Large Cardinals

Cofinality

Definition

The cofinality of a limit ordinal α is

 $cf(\alpha)$ = the least limit ordinal β such that there is an increasing

$$\beta$$
-sequence $\langle \alpha_{\xi} | \xi < \beta \rangle$ with $\lim_{\xi \to \beta} \alpha_{\xi} = \alpha$.

• We say a set S is cofinal in κ iff $S \subset \kappa$ and S is unbounded in κ . That is, $\bigcup S = \kappa$.

Introduction Basics Large Cardinals

Cofinality

Definition

The cofinality of a limit ordinal α is

 $cf(\alpha)$ = the least limit ordinal β such that there is an increasing

 β -sequence $\langle \alpha_{\xi} | \xi < \beta \rangle$ with $\lim_{\xi \to \beta} \alpha_{\xi} = \alpha$.

• We say a set S is cofinal in κ iff $S \subset \kappa$ and S is unbounded in κ . That is, $\bigcup S = \kappa$.

◆□ > ◆□ > ◆豆 > ◆豆 >

Introduction Basics Large Cardinals

Cofinality

Definition

We say an ordinal α is regular iff $cf(\alpha) = \alpha$. Otherwise we say α is singular, that is, iff $cf(\alpha) < \alpha$.

• For example:

- \aleph_0 and \aleph_1 are regular.
- \aleph_{ω} is singular.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction Basics Large Cardinals

Cofinality

Definition

We say an ordinal α is regular iff $cf(\alpha) = \alpha$. Otherwise we say α is singular, that is, iff $cf(\alpha) < \alpha$.

• For example:

- \aleph_0 and \aleph_1 are regular.
- \aleph_{ω} is singular.

Introduction Basics Large Cardinals

Cofinality

Definition

We say an ordinal α is regular iff $cf(\alpha) = \alpha$. Otherwise we say α is singular, that is, iff $cf(\alpha) < \alpha$.

• For example:

- \aleph_0 and \aleph_1 are regular.
- \aleph_{ω} is singular.

Introduction Basics Large Cardinals

Cofinality

Definition

We say an ordinal α is regular iff $cf(\alpha) = \alpha$. Otherwise we say α is singular, that is, iff $cf(\alpha) < \alpha$.

- For example:
 - \aleph_0 and \aleph_1 are regular.
 - \aleph_{ω} is singular.

< D > < P > < P > < P >

Introduction Basics Large Cardinals

Club sets

Definition

• A set S is **unbounded** in κ iff $S \subset \kappa$ and S is cofinal in κ .

- A set S is **closed** iff it contains all of its limit points. That is, the limit of any sequence bounded in S is contained in S.
- A set C is said to be **club** in κ , iff it is closed and unbounded in κ .
- Club sets will be the basis for our primary objects of study.

Introduction Basics Large Cardinals

Club sets

Definition

- A set S is **unbounded** in κ iff $S \subset \kappa$ and S is cofinal in κ .
- A set S is closed iff it contains all of its limit points. That is, the limit of any sequence bounded in S is contained in S.
- A set C is said to be **club** in κ , iff it is closed and unbounded in κ .
- Club sets will be the basis for our primary objects of study.

Introduction Basics Large Cardinals

Club sets

Definition

- A set S is **unbounded** in κ iff $S \subset \kappa$ and S is cofinal in κ .
- A set S is **closed** iff it contains all of its limit points. That is, the limit of any sequence bounded in S is contained in S.
- A set C is said to be club in κ , iff it is closed and unbounded in κ .

• Club sets will be the basis for our primary objects of study.

Introduction Basics Large Cardinals

Club sets

Definition

- A set S is **unbounded** in κ iff $S \subset \kappa$ and S is cofinal in κ .
- A set S is **closed** iff it contains all of its limit points. That is, the limit of any sequence bounded in S is contained in S.
- A set C is said to be club in κ , iff it is closed and unbounded in κ .
- Club sets will be the basis for our primary objects of study.

Introduction Basics Large Cardinals

Large cardinals

- Large cardinals are infinite cardinals with whose existence is independent of ZFC.
 - They are **inaccessible** cardinals with various additional assumptions.
- We will use large cardinals in **consistency results**.
 - For example we will prove theorems of the form: Con(ZFC+LC) →Con(ZFC+φ)
 - Shows that the consistency strength of φ is at most that of the large cardinal axiom LC.
 - For these proofs we build a model of set theory from an existing one. Often use **forcing** to build outer models.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction Basics Large Cardinals

Large cardinals

- Large cardinals are infinite cardinals with whose existence is independent of ZFC.
 - They are **inaccessible** cardinals with various additional assumptions.
- We will use large cardinals in **consistency results**.
 - For example we will prove theorems of the form: Con(ZFC+LC) →Con(ZFC+φ)
 - Shows that the consistency strength of φ is at most that of the large cardinal axiom LC.
 - For these proofs we build a model of set theory from an existing one. Often use forcing to build outer models.

・ロト ・ 同ト ・ ヨト ・ ヨ

Introduction Basics Large Cardinals

Large cardinals

- Large cardinals are infinite cardinals with whose existence is independent of ZFC.
 - They are **inaccessible** cardinals with various additional assumptions.
- We will use large cardinals in consistency results.
 - For example we will prove theorems of the form: $Con(ZFC+LC) \rightarrow Con(ZFC+\varphi)$
 - Shows that the **consistency strength** of *φ* is at most that of the large cardinal axiom LC.
 - For these proofs we build a model of set theory from an existing one. Often use **forcing** to build outer models.

・ロト ・ 同ト ・ ヨト ・

Introduction Basics Large Cardinals

Large cardinals

- Large cardinals are infinite cardinals with whose existence is independent of ZFC.
 - They are **inaccessible** cardinals with various additional assumptions.
- We will use large cardinals in **consistency results**.
 - For example we will prove theorems of the form: $Con(ZFC+LC) \rightarrow Con(ZFC+\varphi)$
 - Shows that the **consistency strength** of *φ* is at most that of the large cardinal axiom LC.
 - For these proofs we build a model of set theory from an existing one. Often use **forcing** to build outer models.

・ロト ・ 同ト ・ ヨト ・

Introduction Basics Large Cardinals

Large cardinals

- Large cardinals are infinite cardinals with whose existence is independent of ZFC.
 - They are **inaccessible** cardinals with various additional assumptions.
- We will use large cardinals in **consistency results**.
 - For example we will prove theorems of the form: $Con(ZFC+LC) \rightarrow Con(ZFC+\varphi)$
 - Shows that the **consistency strength** of *φ* is at most that of the large cardinal axiom LC.
 - For these proofs we build a model of set theory from an existing one. Often use **forcing** to build outer models.
Introduction Basics Large Cardinals

Large cardinals

- Large cardinals are infinite cardinals with whose existence is independent of ZFC.
 - They are **inaccessible** cardinals with various additional assumptions.
- We will use large cardinals in **consistency results**.
 - For example we will prove theorems of the form: $Con(ZFC+LC) \rightarrow Con(ZFC+\varphi)$
 - Shows that the **consistency strength** of *φ* is at most that of the large cardinal axiom LC.
 - For these proofs we build a model of set theory from an existing one. Often use **forcing** to build outer models.

Introduction Basics Large Cardinals

Large cardinals Examples

- Large cardinals form a mostly linear ordering by consistency strength.
- For example, from low to high consistency strength we have:
 - Measurable, Quasicompact, Woodin, Supercompact, ...

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction Basics Large Cardinals

Large cardinals Examples

- Large cardinals form a mostly linear ordering by consistency strength.
- For example, from low to high consistency strength we have:
 - Measurable, Quasicompact, Woodin, Supercompact, ...

Introduction Basics Large Cardinals

Large cardinals Examples

- Large cardinals form a mostly linear ordering by consistency strength.
- For example, from low to high consistency strength we have:
 - Measurable, Quasicompact, Woodin, Supercompact, ...

< D > < P > < P > < P >

Introduction Basics Large Cardinals

Elementary embeddings

Definition

A function $j: M \rightarrow N$ between models is called an **elementary** embedding iff it preserves first-order formulas.

• For example, if $j: M \rightarrow N$ is elementary, then

 $M \models (\forall z \in x)(z \cap \kappa = \emptyset) \longleftrightarrow N \models (\forall z \in j(x))(z \cap j(\kappa) = \emptyset)$

If κ is the least ordinal such that j(κ) > κ, then we call crit(j) = κ the critical point of j.

・ロト ・部ト ・ヨト ・ヨト

Introduction Basics Large Cardinals

Elementary embeddings

Definition

A function $j: M \rightarrow N$ between models is called an **elementary** embedding iff it preserves first-order formulas.

• For example, if $j: M \to N$ is elementary, then

$$M \models (\forall z \in x)(z \cap \kappa = \emptyset) \longleftrightarrow N \models (\forall z \in j(x))(z \cap j(\kappa) = \emptyset)$$

If κ is the least ordinal such that j(κ) > κ, then we call crit(j) = κ the critical point of j.

・ロト ・ 同ト ・ ヨト ・

Introduction Basics Large Cardinals

Elementary embeddings

Definition

A function $j: M \rightarrow N$ between models is called an **elementary** embedding iff it preserves first-order formulas.

• For example, if $j: M \to N$ is elementary, then

$$M \models (\forall z \in x)(z \cap \kappa = \emptyset) \longleftrightarrow N \models (\forall z \in j(x))(z \cap j(\kappa) = \emptyset)$$

If κ is the least ordinal such that j(κ) > κ, then we call crit(j) = κ the critical point of j.

Introduction Basics Large Cardinals

Elementary embeddings & large cardinals

• Many large cardinals have both an elementary embedding definition and combinatorial definition.

Definition

If there exists a nonprincipal κ -complete ultrafilter on κ , we say κ is **measurable**.

Theorem

 κ is measurable iff there is an elementary embedding $j: V \to M$ with $crit(j) = \kappa$.

• We will use both definitions as it is convenient.

(日) (同) (三) (三)

Introduction Basics Large Cardinals

Elementary embeddings & large cardinals

• Many large cardinals have both an elementary embedding definition and combinatorial definition.

Definition

If there exists a nonprincipal κ -complete ultrafilter on κ , we say κ is **measurable**.

Theorem

 κ is measurable iff there is an elementary embedding $j: V \to M$ with $crit(j) = \kappa$.

• We will use both definitions as it is convenient.

(日) (同) (三) (三)

Introduction Basics Large Cardinals

Elementary embeddings & large cardinals

• Many large cardinals have both an elementary embedding definition and combinatorial definition.

Definition

If there exists a nonprincipal κ -complete ultrafilter on κ , we say κ is **measurable**.

Theorem

 κ is measurable iff there is an elementary embedding $j: V \to M$ with $crit(j) = \kappa$.

• We will use both definitions as it is convenient.

(日) (同) (三) (三)

Introduction Basics Large Cardinals

Elementary embeddings & large cardinals

• Many large cardinals have both an elementary embedding definition and combinatorial definition.

Definition

If there exists a nonprincipal κ -complete ultrafilter on κ , we say κ is **measurable**.

Theorem

 κ is measurable iff there is an elementary embedding $j: V \to M$ with $crit(j) = \kappa$.

• We will use both definitions as it is convenient.

- We are interested in how the universe behaves at (small) singular cardinals.
- Are there properties are independent of ZFC?f
- Numerous combinatorial principles which we may study.
 - Square, diamond, tree, stationary set reflection, etc.
- The existence of one type of combinatorial object might imply the existence or nonexistence of another.
- We look at the consistency strength of these principles holding or failing.

・ロト ・ 同ト ・ ヨト ・

- We are interested in how the universe behaves at (small) singular cardinals.
- Are there properties are independent of ZFC?f
- Numerous combinatorial principles which we may study.
 - Square, diamond, tree, stationary set reflection, etc.
- The existence of one type of combinatorial object might imply the existence or nonexistence of another.
- We look at the consistency strength of these principles holding or failing.

< ロ > < 同 > < 三 > <

- We are interested in how the universe behaves at (small) singular cardinals.
- Are there properties are independent of ZFC?f
- Numerous combinatorial principles which we may study.
 - Square, diamond, tree, stationary set reflection, etc.
- The existence of one type of combinatorial object might imply the existence or nonexistence of another.
- We look at the consistency strength of these principles holding or failing.

- We are interested in how the universe behaves at (small) singular cardinals.
- Are there properties are independent of ZFC?f
- Numerous combinatorial principles which we may study.
 - Square, diamond, tree, stationary set reflection, etc.
- The existence of one type of combinatorial object might imply the existence or nonexistence of another.
- We look at the consistency strength of these principles holding or failing.

- We are interested in how the universe behaves at (small) singular cardinals.
- Are there properties are independent of ZFC?f
- Numerous combinatorial principles which we may study.
 - Square, diamond, tree, stationary set reflection, etc.
- The existence of one type of combinatorial object might imply the existence or nonexistence of another.
- We look at the consistency strength of these principles holding or failing.

- We are interested in how the universe behaves at (small) singular cardinals.
- Are there properties are independent of ZFC?f
- Numerous combinatorial principles which we may study.
 - Square, diamond, tree, stationary set reflection, etc.
- The existence of one type of combinatorial object might imply the existence or nonexistence of another.
- We look at the consistency strength of these principles holding or failing.

Motivation Square and other principles

Square principle

Definition

A sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \lim(\kappa, \kappa^+) \rangle$ is called a \Box_{κ} sequence iff for each α

- C_{α} is club in α
- $(Coherence) \beta \in lim(C_{\alpha}) \rightarrow C_{\beta} = \beta \cap C_{\alpha}$
- 3 otp $(C_{\alpha}) \leq \kappa$

• We say " \Box_{κ} holds" iff there exists a \Box_{κ} sequence.

Square principle

Definition

A sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \lim(\kappa, \kappa^+) \rangle$ is called a \Box_{κ} sequence iff for each α

- C_{α} is club in α
- (Coherence) $\beta \in \lim(C_{\alpha}) \rightarrow C_{\beta} = \beta \cap C_{\alpha}$
- 3 otp $(C_{lpha}) \leq \kappa$

• We say " \Box_{κ} holds" iff there exists a \Box_{κ} sequence.

Square principle

Definition

A sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \lim(\kappa, \kappa^+) \rangle$ is called a \Box_{κ} sequence iff for each α

- C_{α} is club in α
- $\textbf{(Coherence)} \ \beta \in \mathsf{lim}(C_{\alpha}) \to C_{\beta} = \beta \cap C_{\alpha}$

3 otp $(\mathit{C}_{lpha}) \leq \kappa$

• We say " \Box_{κ} holds" iff there exists a \Box_{κ} sequence.

Motivation Square and other principles

Square principle

Definition

A sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \lim(\kappa, \kappa^+) \rangle$ is called a \Box_{κ} sequence iff for each α

- C_{α} is club in α
- (Coherence) β ∈ lim(C_α) → C_β = β ∩ C_α
- (a) $otp(C_{\alpha}) \leq \kappa$

• We say " \Box_{κ} holds" iff there exists a \Box_{κ} sequence.

Square principle

Definition

A sequence $\vec{C} = \langle C_{\alpha} \mid \alpha \in \lim(\kappa, \kappa^+) \rangle$ is called a \Box_{κ} sequence iff for each α

- C_{α} is club in α
- (a) $otp(C_{\alpha}) \leq \kappa$

• We say " \Box_{κ} holds" iff there exists a \Box_{κ} sequence.

Motivation Square and other principles

Other square principles

• Common properties

- Sequences of clubs or sets of clubs
- Coherence

Examples

 $\square_{\kappa,\gamma}, \square(\kappa^+), \square^*_{\kappa}$, global square, etc.

• How can a square principle fail?

- If every coherent sequence of squares has a **thread**, that is, a club that coheres with the sequence and reaches to the top.
- We will often use large cardinals and their elementary embeddings to build threads.

<ロ> (四) (四) (日) (日) (日)

Motivation Square and other principles

Other square principles

• Common properties

- Sequences of clubs or sets of clubs
- Coherence

Examples

 $\Box_{\kappa,\gamma}, \ \Box(\kappa^+), \ \Box^*_{\kappa}$, global square, etc.

• How can a square principle fail?

- If every coherent sequence of squares has a thread, that is, a club that coheres with the sequence and reaches to the top.
- We will often use large cardinals and their elementary embeddings to build threads.

<ロ> (四) (四) (日) (日) (日)

Motivation Square and other principles

Other square principles

• Common properties

- Sequences of clubs or sets of clubs
- Coherence

Examples

 $\square_{\kappa,\gamma}, \ \square(\kappa^+), \ \square_{\kappa}^*, \ \mathsf{global} \ \mathsf{square}, \ \mathsf{etc}.$

• How can a square principle fail?

- If every coherent sequence of squares has a **thread**, that is, a club that coheres with the sequence and reaches to the top.
- We will often use large cardinals and their elementary embeddings to build threads.

<ロ> (四) (四) (日) (日) (日)

Motivation Square and other principles

Other square principles

• Common properties

- Sequences of clubs or sets of clubs
- Coherence

Examples

 $\square_{\kappa,\gamma}, \square(\kappa^+), \square^*_{\kappa}$, global square, etc.

• How can a square principle fail?

- If every coherent sequence of squares has a **thread**, that is, a club that coheres with the sequence and reaches to the top.
- We will often use large cardinals and their elementary embeddings to build threads.

< ロ > < 同 > < 回 > < 回 >

Other square principles

• Common properties

- Sequences of clubs or sets of clubs
- Coherence

Examples

$$\square_{\kappa,\gamma}$$
, $\square(\kappa^+)$, \square^*_κ , global square, etc.

• How can a square principle fail?

- If every coherent sequence of squares has a **thread**, that is, a club that coheres with the sequence and reaches to the top.
- We will often use large cardinals and their elementary embeddings to build threads.

Motivation Square and other principles

Other square principles

• Common properties

- Sequences of clubs or sets of clubs
- Coherence

Examples

$$\square_{\kappa,\gamma}$$
, $\square(\kappa^+)$, \square^*_κ , global square, etc.

- How can a square principle fail?
 - If every coherent sequence of squares has a **thread**, that is, a club that coheres with the sequence and reaches to the top.
 - We will often use large cardinals and their elementary embeddings to build threads.

Motivation Square and other principles

Other square principles

• Common properties

- Sequences of clubs or sets of clubs
- Coherence

Examples

$$\square_{\kappa,\gamma}$$
, $\square(\kappa^+)$, \square^*_κ , global square, etc.

- How can a square principle fail?
 - If every coherent sequence of squares has a **thread**, that is, a club that coheres with the sequence and reaches to the top.
 - We will often use large cardinals and their elementary embeddings to build threads.

Motivation Square and other principles

Tree property

Definitions

A κ tree is a tree of height κ and width $< \kappa$. We say that a cardinal κ has the tree property iff every κ tree has a cofinal branch.

• Observe that if $\vec{C} = \langle C_{\alpha} \mid \alpha < \kappa \rangle$ is a coherent sequence of clubs, then the following defines a tree ordering on κ :

 $\alpha <_{T} \beta \longleftrightarrow \alpha \in \lim(C_{\beta})$

Theorem

(Jensen) There is a special κ^+ -Aronzajn tree (that is, the tree property at κ^+ fails) iff the weak square property \Box^*_{κ}

Tree property

Definitions

A κ tree is a tree of height κ and width $< \kappa$. We say that a cardinal κ has the tree property iff every κ tree has a cofinal branch.

• Observe that if $\vec{C} = \langle C_{\alpha} \mid \alpha < \kappa \rangle$ is a coherent sequence of clubs, then the following defines a tree ordering on κ :

$$\alpha <_T \beta \longleftrightarrow \alpha \in \lim(C_\beta)$$

Theorem

(Jensen) There is a special κ^+ -Aronzajn tree (that is, the tree property at κ^+ fails) iff the weak square property \Box_{κ}^*

Tree property

Definitions

A κ tree is a tree of height κ and width $< \kappa$. We say that a cardinal κ has the tree property iff every κ tree has a cofinal branch.

• Observe that if $\vec{C} = \langle C_{\alpha} \mid \alpha < \kappa \rangle$ is a coherent sequence of clubs, then the following defines a tree ordering on κ :

$$\alpha <_T \beta \longleftrightarrow \alpha \in \lim(C_\beta)$$

Theorem

(Jensen) There is a special κ^+ -Aronzajn tree (that is, the tree property at κ^+ fails) iff the weak square property \Box_{κ}^*

First result Second result Future work

A preliminary result

Theorem

(H.) It is consistent with ZFC and the existence of a quasicompact^{*} cardinal that $\Box(\aleph_{\omega+1}, < \omega)$ fails.

- Lowers the consistency strength of the failure of □(κ) at the successor to a small singular cardinal to QC*.
- Here QC* is a small strengthening of quasicompactness.
- Much lower than supercompactness, the existing upper bound.
- Used arguments involving a modified Prikry forcing.

< ロ > < 同 > < 回 > .

First result Second result Future work

A preliminary result

Theorem

(H.) It is consistent with ZFC and the existence of a quasicompact^{*} cardinal that $\Box(\aleph_{\omega+1}, < \omega)$ fails.

- Lowers the consistency strength of the failure of □(κ) at the successor to a small singular cardinal to QC*.
- Here QC* is a small strengthening of quasicompactness.
- Much lower than supercompactness, the existing upper bound.
- Used arguments involving a modified Prikry forcing.

< D > < P > < P > < P >

First result Second result Future work

A preliminary result

Theorem

(H.) It is consistent with ZFC and the existence of a quasicompact^{*} cardinal that $\Box(\aleph_{\omega+1}, < \omega)$ fails.

- Lowers the consistency strength of the failure of □(κ) at the successor to a small singular cardinal to QC*.
- Here QC^* is a small strengthening of quasicompactness.
- Much lower than supercompactness, the existing upper bound.
- Used arguments involving a modified Prikry forcing.

< ロ > < 同 > < 回 > <

First result Second result Future work

A preliminary result

Theorem

(H.) It is consistent with ZFC and the existence of a quasicompact^{*} cardinal that $\Box(\aleph_{\omega+1}, < \omega)$ fails.

- Lowers the consistency strength of the failure of □(κ) at the successor to a small singular cardinal to QC*.
- Here QC^* is a small strengthening of quasicompactness.
- Much lower than supercompactness, the existing upper bound.
- Used arguments involving a modified Prikry forcing.

< ロ > < 同 > < 回 > <
First result Second result Future work

A preliminary result

Theorem

(H.) It is consistent with ZFC and the existence of a quasicompact^{*} cardinal that $\Box(\aleph_{\omega+1}, < \omega)$ fails.

- Lowers the consistency strength of the failure of □(κ) at the successor to a small singular cardinal to QC*.
- Here QC* is a small strengthening of quasicompactness.
- Much lower than supercompactness, the existing upper bound.
- Used arguments involving a modified Prikry forcing.

First result Second result Future work

General approach

- Start with a large cardinal at which our desired property holds.
- Change the cardinal into a singular cardinal via Prikry forcing, and/or collapse it.
 - Do so in such a way that desired properties are preserved.
 - Use elementary map to construct a thread.

(日) (同) (三) (

First result Second result Future work

General approach

- Start with a large cardinal at which our desired property holds.
- Change the cardinal into a singular cardinal via Prikry forcing, and/or collapse it.
 - Do so in such a way that desired properties are preserved.
 - Use elementary map to construct a thread.

< D > < P > < P > < P >

First result Second result Future work

General approach

- Start with a large cardinal at which our desired property holds.
- Change the cardinal into a singular cardinal via Prikry forcing, and/or collapse it.
 - Do so in such a way that desired properties are preserved.
 - Use elementary map to construct a thread.

< ロト < 同ト < ヨト

First result Second result Future work

General approach

- Start with a large cardinal at which our desired property holds.
- Change the cardinal into a singular cardinal via Prikry forcing, and/or collapse it.
 - Do so in such a way that desired properties are preserved.
 - Use elementary map to construct a thread.

First result Second result Future work

Large cardinal notions

Definition

A cardinal κ is subcompact iff for every $B \subseteq \kappa^+$ there exists $\mu < \kappa$, $A \subseteq \mu^+$ and an elementary embedding

$$j: (H_{\mu^+}, \in, A) \rightarrow (H_{\kappa^+}, \in, B)$$

with $\operatorname{crit}(j) = \mu$.

Theorem

If κ is subcompact then \Box_{κ} fails.

• We also use **quasicompact** cardinals, which mirror the same definition except mapping up.

イロト イポト イヨト イヨ

First result Second result Future work

Large cardinal notions

Definition

A cardinal κ is subcompact iff for every $B \subseteq \kappa^+$ there exists $\mu < \kappa$, $A \subseteq \mu^+$ and an elementary embedding

$$j: (H_{\mu^+}, \in, A) \rightarrow (H_{\kappa^+}, \in, B)$$

with $\operatorname{crit}(j) = \mu$.

Theorem

If κ is subcompact then \Box_{κ} fails.

• We also use **quasicompact** cardinals, which mirror the same definition except mapping up.

< ロ > (同 > (回 > (回 >))

First result Second result Future work

Large cardinal notions

Definition

A cardinal κ is subcompact iff for every $B \subseteq \kappa^+$ there exists $\mu < \kappa$, $A \subseteq \mu^+$ and an elementary embedding

$$j: (H_{\mu^+}, \in, A) \rightarrow (H_{\kappa^+}, \in, B)$$

with $\operatorname{crit}(j) = \mu$.

Theorem

If κ is subcompact then \Box_{κ} fails.

• We also use **quasicompact** cardinals, which mirror the same definition except mapping up.

イロト イポト イヨト イヨト

First result Second result Future work

Prikry forcing

• Forcing which turns a regular cardinal into a singular cardinal.

- Adds an ω -sequence cofinal in κ , thus singularizing κ .
- Requires κ to be measurable. Makes explicit use of the combinatorial definition.
- Nice properties include:
 - Preserves all cardinals
 - Does not add bounded subsets of κ .
 - Useful corollary If cof(γ) < κ and we add a club C in γ, C must contain a club in γ in the ground model.

4 日 2 4 同 2 4 三 2 4 4

First result Second result Future work

Prikry forcing

- Forcing which turns a regular cardinal into a singular cardinal.
- Adds an ω -sequence cofinal in κ , thus singularizing κ .
- Requires κ to be measurable. Makes explicit use of the combinatorial definition.
- Nice properties include:
 - Preserves all cardinals
 - Does not add bounded subsets of κ .
 - Useful corollary If $cof(\gamma) < \kappa$ and we add a club C in γ , C must contain a club in γ in the ground model.

< □ > < 同 > < 回 > <

- Forcing which turns a regular cardinal into a singular cardinal.
- Adds an ω -sequence cofinal in κ , thus singularizing κ .
- Requires κ to be measurable. Makes explicit use of the combinatorial definition.
- Nice properties include:
 - Preserves all cardinals
 - Does not add bounded subsets of κ .
 - Useful corollary If $cof(\gamma) < \kappa$ and we add a club C in γ , C must contain a club in γ in the ground model.

< □ > < 同 > < 回 > <

- Forcing which turns a regular cardinal into a singular cardinal.
- Adds an ω -sequence cofinal in κ , thus singularizing κ .
- Requires κ to be measurable. Makes explicit use of the combinatorial definition.
- Nice properties include:
 - Preserves all cardinals
 - Does not add bounded subsets of κ .
 - Useful corollary If cof(γ) < κ and we add a club C in γ, C must contain a club in γ in the ground model.

- Forcing which turns a regular cardinal into a singular cardinal.
- Adds an ω -sequence cofinal in κ , thus singularizing κ .
- Requires κ to be measurable. Makes explicit use of the combinatorial definition.
- Nice properties include:
 - Preserves all cardinals
 - Does not add bounded subsets of κ .
 - Useful corollary If cof(γ) < κ and we add a club C in γ, C must contain a club in γ in the ground model.

- Forcing which turns a regular cardinal into a singular cardinal.
- Adds an ω -sequence cofinal in κ , thus singularizing κ .
- Requires κ to be measurable. Makes explicit use of the combinatorial definition.
- Nice properties include:
 - Preserves all cardinals
 - Does not add bounded subsets of κ .
 - Useful corollary If cof(γ) < κ and we add a club C in γ, C must contain a club in γ in the ground model.

- Forcing which turns a regular cardinal into a singular cardinal.
- Adds an ω -sequence cofinal in κ , thus singularizing κ .
- Requires κ to be measurable. Makes explicit use of the combinatorial definition.
- Nice properties include:
 - Preserves all cardinals
 - Does not add bounded subsets of κ .
 - Useful corollary If cof(γ) < κ and we add a club C in γ, C must contain a club in γ in the ground model.

First result Second result Future work

Modifying Prikry forcing

• If we want to turn κ into \aleph_{ω} , we must modify our Prikry forcing:

- Interleave our ω sequence with conditions from Levy collapses, so that γ_n in our ω -sequence becomes \aleph_{k+n} for some conveniently fixed $k \in \omega$.
- k chosen to give adequate closure in our forcings.

First result Second result Future work

Modifying Prikry forcing

- If we want to turn κ into κ_ω, we must modify our Prikry forcing:
 - Interleave our ω sequence with conditions from Levy collapses, so that γ_n in our ω -sequence becomes \aleph_{k+n} for some conveniently fixed $k \in \omega$.
 - k chosen to give adequate closure in our forcings.

First result Second result Future work

Modifying Prikry forcing

- If we want to turn κ into κ_ω, we must modify our Prikry forcing:
 - Interleave our ω sequence with conditions from Levy collapses, so that γ_n in our ω -sequence becomes \aleph_{k+n} for some conveniently fixed $k \in \omega$.
 - k chosen to give adequate closure in our forcings.

First result Second result Future work

A further result

Theorem

(H.) It is consistent with ZFC and the existence of a cardinal which is measurable and subcompact that κ is singular and $\Box_{\kappa,2}$ holds while \Box_{κ} fails.

- This is similar to a more general result by Cummings, Foreman & Magidor at X_ω which requires a supercompact.
- Purpose of this result is to separate out these square principles.
 - We have from ZFC that $\Box_{\kappa} \rightarrow \Box_{\kappa,2}$
 - (Schimmerling-Zeman) In models of the form L[Ē], κ not subcompact iff □_κ holds iff □_{κ,<κ} holds.
- The argument builds upon earlier work of Jensen.

(日) (同) (三) (

First result Second result Future work

A further result

Theorem

(H.) It is consistent with ZFC and the existence of a cardinal which is measurable and subcompact that κ is singular and $\Box_{\kappa,2}$ holds while \Box_{κ} fails.

- This is similar to a more general result by Cummings, Foreman & Magidor at X_ω which requires a supercompact.
- Purpose of this result is to separate out these square principles.
 - We have from ZFC that $\Box_{\kappa} \rightarrow \Box_{\kappa,2}$
 - (Schimmerling-Zeman) In models of the form L[Ē], κ not subcompact iff □_κ holds iff □_{κ,<κ} holds.
- The argument builds upon earlier work of Jensen.

◆ロト ◆掃 ▶ ◆注 ▶ ◆注

First result Second result Future work

A further result

Theorem

(H.) It is consistent with ZFC and the existence of a cardinal which is measurable and subcompact that κ is singular and $\Box_{\kappa,2}$ holds while \Box_{κ} fails.

- This is similar to a more general result by Cummings, Foreman & Magidor at X_ω which requires a supercompact.
- Purpose of this result is to separate out these square principles.
 - We have from ZFC that $\Box_{\kappa} \rightarrow \Box_{\kappa,2}$
 - (Schimmerling-Zeman) In models of the form L[Ē], κ not subcompact iff □_κ holds iff □_{κ,<κ} holds.
- The argument builds upon earlier work of Jensen.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

First result Second result Future work

A further result

Theorem

(H.) It is consistent with ZFC and the existence of a cardinal which is measurable and subcompact that κ is singular and $\Box_{\kappa,2}$ holds while \Box_{κ} fails.

- This is similar to a more general result by Cummings, Foreman & Magidor at X_ω which requires a supercompact.
- Purpose of this result is to separate out these square principles.
 - We have from ZFC that $\Box_{\kappa} \to \Box_{\kappa,2}$
 - (Schimmerling-Zeman) In models of the form L[Ē], κ not subcompact iff □_κ holds iff □_{κ,<κ} holds.
- The argument builds upon earlier work of Jensen.

(日) (同) (三) (

First result **Second result** Future work

A further result

Theorem

(H.) It is consistent with ZFC and the existence of a cardinal which is measurable and subcompact that κ is singular and $\Box_{\kappa,2}$ holds while \Box_{κ} fails.

- This is similar to a more general result by Cummings, Foreman & Magidor at X_ω which requires a supercompact.
- Purpose of this result is to separate out these square principles.
 - We have from ZFC that $\Box_{\kappa} \rightarrow \Box_{\kappa,2}$
 - (Schimmerling-Zeman) In models of the form $L[\vec{E}]$, κ not subcompact iff \Box_{κ} holds iff $\Box_{\kappa,<\kappa}$ holds.
- The argument builds upon earlier work of Jensen.

(日) (同) (三) (

First result **Second result** Future work

A further result

Theorem

(H.) It is consistent with ZFC and the existence of a cardinal which is measurable and subcompact that κ is singular and $\Box_{\kappa,2}$ holds while \Box_{κ} fails.

- This is similar to a more general result by Cummings, Foreman & Magidor at X_ω which requires a supercompact.
- Purpose of this result is to separate out these square principles.
 - We have from ZFC that $\Box_{\kappa} \rightarrow \Box_{\kappa,2}$
 - (Schimmerling-Zeman) In models of the form $L[\vec{E}]$, κ not subcompact iff \Box_{κ} holds iff $\Box_{\kappa,<\kappa}$ holds.
- The argument builds upon earlier work of Jensen.

A B A B A B A

First result **Second result** Future work

Methods

• We do a preparation forcing involving:

- A carefully chosen Easton support iteration
- Our iteration add and then thread $\Box_{\alpha,2}$ sequences for many $\alpha < \kappa$.
- Easton allows us to factor our forcing in useful ways, and extend our subcompactness map to forcing extensions.
- Preparation done in a way that preserves measurability.
- Follow with an ordinary Prikry forcing.

First result **Second result** Future work

Methods

- We do a preparation forcing involving:
 - A carefully chosen Easton support iteration
 - Our iteration add and then thread $\Box_{\alpha,2}$ sequences for many $\alpha < \kappa$.
 - Easton allows us to factor our forcing in useful ways, and extend our subcompactness map to forcing extensions.
- Preparation done in a way that preserves measurability.
- Follow with an ordinary Prikry forcing.

First result **Second result** Future work

Methods

- We do a preparation forcing involving:
 - A carefully chosen Easton support iteration
 - Our iteration add and then thread $\Box_{\alpha,2}$ sequences for many $\alpha < \kappa.$
 - Easton allows us to factor our forcing in useful ways, and extend our subcompactness map to forcing extensions.
- Preparation done in a way that preserves measurability.
- Follow with an ordinary Prikry forcing.

First result **Second result** Future work

Methods

- We do a preparation forcing involving:
 - A carefully chosen Easton support iteration
 - Our iteration add and then thread $\Box_{\alpha,2}$ sequences for many $\alpha < \kappa.$
 - Easton allows us to factor our forcing in useful ways, and extend our subcompactness map to forcing extensions.
- Preparation done in a way that preserves measurability.
- Follow with an ordinary Prikry forcing.

Methods

- We do a preparation forcing involving:
 - A carefully chosen Easton support iteration
 - Our iteration add and then thread $\Box_{\alpha,2}$ sequences for many $\alpha < \kappa.$
 - Easton allows us to factor our forcing in useful ways, and extend our subcompactness map to forcing extensions.
- Preparation done in a way that preserves measurability.
- Follow with an ordinary Prikry forcing.

Methods

- We do a preparation forcing involving:
 - A carefully chosen Easton support iteration
 - Our iteration add and then thread $\Box_{\alpha,2}$ sequences for many $\alpha < \kappa.$
 - Easton allows us to factor our forcing in useful ways, and extend our subcompactness map to forcing extensions.
- Preparation done in a way that preserves measurability.
- Follow with an ordinary Prikry forcing.

Set Theory Basics	First result
Singular Cardinal Combinatorics	Second result
Results	Future work
uture work	

$$\square_{\aleph_{\omega},2} + \neg \square_{\aleph_{\omega}}$$

• Would like to generalize to

$$\Box_{\aleph_{\omega},n+1} + \neg \Box_{\aleph_{\omega},n}$$

- This has been shown by Cummings, Foreman & Magidor starting with a supercompact cardinal and $2^{\kappa^{+\omega}} = \kappa^{+\omega+1}$
- Tackle the consistency strength of the failure of global square at singulars, etc.

• = • •

Set Theory Basics	First result
Singular Cardinal Combinatorics	Second result
Results	Future work
uture work	

$$\square_{\aleph_{\omega},2} + \neg \square_{\aleph_{\omega}}$$

• Would like to generalize to

$$\Box_{\aleph_{\omega},n+1} + \neg \Box_{\aleph_{\omega},n}$$

- This has been shown by Cummings, Foreman & Magidor starting with a supercompact cardinal and $2^{\kappa^{+\omega}} = \kappa^{+\omega+1}$
- Tackle the consistency strength of the failure of global square at singulars, etc.

Set Theory Basics	First result
Singular Cardinal Combinatorics	Second result
Results	Future work
uture work	

$$\square_{\aleph_{\omega},2} + \neg \square_{\aleph_{\omega}}$$

Would like to generalize to

$$\Box_{\aleph_{\omega},n+1} + \neg \Box_{\aleph_{\omega},n}$$

- This has been shown by Cummings, Foreman & Magidor starting with a supercompact cardinal and $2^{\kappa^{+\omega}}=\kappa^{+\omega+1}$.
- Tackle the consistency strength of the failure of global square at singulars, etc.

Set Theory Basics	First result
Singular Cardinal Combinatorics	Second result
Results	Future work
uture work	

$$\square_{\aleph_{\omega},2} + \neg \square_{\aleph_{\omega}}$$

Would like to generalize to

$$\Box_{\aleph_{\omega},n+1} + \neg \Box_{\aleph_{\omega},n}$$

- This has been shown by Cummings, Foreman & Magidor starting with a supercompact cardinal and $2^{\kappa^{+\omega}}=\kappa^{+\omega+1}$.
- Tackle the consistency strength of the failure of global square at singulars, etc.