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Introduction

We study infinitary combinatorial principles at singular
cardinals.
Our goal is to narrow down the consistency strengths of these
principles.
Current upper bounds on consistency strengths are very high.
We use the method of forcing combined with certain promising
smaller large cardinals to lower these upper bounds greatly.
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Ordinal numbers
Definition

Definition
A set α is an ordinal number iff it is transitive and well-ordered by
∈. We will denote the proper class of all ordinals by On.

Ordinal numbers are sets to which well-ordered linear orderings
are order-isomorphic. They are commonly used for transfinite
induction.
We say that α < β ←→ α ∈ β
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Ordinal numbers
Construction

We build ordinals inductively:
0 := /0

α +1 := S(α), where S(x) = x ∪{x} is the successor function.
For A=

〈
αξ | ξ < γ

〉
⊂ On, α =

⋃
A is an ordinal, and is the

supremum/limit of A.

Two types of ordinals:

α is a successor iff ∃β : S(β ) = α.
α is a limit otherwise.
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Cardinal numbers

Definition
We say that an ordinal number κ is a cardinal number iff it can’t
be injectively mapped to a smaller ordinal number.

Cardinals are used to describe the sizes of sets.
Infinite cardinals are represented by the aleph numbers ℵα .

ℵ0 = |ω|
Enumerated by ordinals.
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Cofinality

Definition
The cofinality of a limit ordinal α is

cf(α) = the least limit ordinal β such that there is an increasing

β -sequence
〈
αξ | ξ < β

〉
with limξ→β αξ = α.

We say a set S is cofinal in κ iff S ⊂ κ and S is unbounded in
κ . That is,

⋃
S = κ .
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Cofinality

Definition
We say an ordinal α is regular iff cf(α) = α .
Otherwise we say α is singular, that is, iff cf(α)< α .

For example:

ℵ0 and ℵ1 are regular.
ℵω is singular.
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Club sets

Definition
A set S is unbounded in κ iff S ⊂ κ and S is cofinal in κ .
A set S is closed iff it contains all of its limit points. That is,
the limit of any sequence bounded in S is contained in S .
A set C is said to be club in κ , iff it is closed and unbounded
in κ .

Club sets will be the basis for our primary objects of study.
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Large cardinals

Large cardinals are infinite cardinals with whose existence is
independent of ZFC.

They are inaccessible cardinals with various additional
assumptions.

We will use large cardinals in consistency results.
For example we will prove theorems of the form:
Con(ZFC+LC)→Con(ZFC+ϕ)
Shows that the consistency strength of ϕ is at most that of
the large cardinal axiom LC.
For these proofs we build a model of set theory from an
existing one. Often use forcing to build outer models.
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Large cardinals
Examples

Large cardinals form a mostly linear ordering by consistency
strength.
For example, from low to high consistency strength we have:

Measurable, Quasicompact, Woodin, Supercompact, ...
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Elementary embeddings

Definition
A function j :M → N between models is called an elementary
embedding iff it preserves first-order formulas.

For example, if j :M → N is elementary, then

M |= (∀z ∈ x)(z ∩κ = /0)←→ N |= (∀z ∈ j(x))(z ∩ j(κ) = /0)

If κ is the least ordinal such that j(κ)> κ , then we call
crit(j) = κ the critical point of j .
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Elementary embeddings & large cardinals

Many large cardinals have both an elementary embedding
definition and combinatorial definition.

Definition
If there exists a nonprincipal κ-complete ultrafilter on κ , we say κ

is measurable.

Theorem
κ is measurable iff there is an elementary embedding j : V →M
with crit(j) = κ .

We will use both definitions as it is convenient.
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Motivation

We are interested in how the universe behaves at (small)
singular cardinals.
Are there properties are independent of ZFC?f
Numerous combinatorial principles which we may study.

Square, diamond, tree, stationary set reflection, etc.

The existence of one type of combinatorial object might imply
the existence or nonexistence of another.
We look at the consistency strength of these principles holding
or failing.
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Square principle

Definition

A sequence ~C =
〈
Cα | α ∈ lim(κ,κ+)

〉
is called a �κ sequence iff

for each α

1 Cα is club in α

2 (Coherence) β ∈ lim(Cα)→ Cβ = β ∩Cα

3 otp(Cα)≤ κ

We say “�κ holds” iff there exists a �κ sequence.
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Other square principles

Common properties

Sequences of clubs or sets of clubs
Coherence

Examples

�κ,γ , �(κ+), �∗κ , global square, etc.

How can a square principle fail?

If every coherent sequence of squares has a thread, that is, a
club that coheres with the sequence and reaches to the top.
We will often use large cardinals and their elementary
embeddings to build threads.
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Tree property

Definitions
A κ tree is a tree of height κ and width < κ .
We say that a cardinal κ has the tree property iff every κ tree has
a cofinal branch.

Observe that if ~C = 〈Cα | α < κ〉 is a coherent sequence of
clubs, then the following defines a tree ordering on κ :

α <T β ←→ α ∈ lim(Cβ )

Theorem

(Jensen) There is a special κ+-Aronzajn tree (that is, the tree
property at κ+ fails) iff the weak square property �∗κ
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A preliminary result

Theorem
(H.) It is consistent with ZFC and the existence of a quasicompact∗

cardinal that �(ℵω+1,< ω) fails.

Lowers the consistency strength of the failure of �(κ) at the
successor to a small singular cardinal to QC ∗.
Here QC ∗ is a small strengthening of quasicompactness.
Much lower than supercompactness, the existing upper bound.
Used arguments involving a modified Prikry forcing.
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General approach

Start with a large cardinal at which our desired property holds.
Change the cardinal into a singular cardinal via Prikry forcing,
and/or collapse it.

Do so in such a way that desired properties are preserved.
Use elementary map to construct a thread.
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Large cardinal notions

Definition

A cardinal κ is subcompact iff for every B ⊆ κ+ there exists
µ < κ , A⊆ µ+ and an elementary embedding

j : (Hµ+ ,∈,A)→ (Hκ+ ,∈,B)

with crit(j) = µ .

Theorem
If κ is subcompact then �κ fails.

We also use quasicompact cardinals, which mirror the same
definition except mapping up.
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Prikry forcing

Forcing which turns a regular cardinal into a singular cardinal.
Adds an ω-sequence cofinal in κ , thus singularizing κ .
Requires κ to be measurable. Makes explicit use of the
combinatorial definition.
Nice properties include:

Preserves all cardinals
Does not add bounded subsets of κ.
Useful corollary - If cof(γ)< κ and we add a club C in γ, C
must contain a club in γ in the ground model.
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Modifying Prikry forcing

If we want to turn κ into ℵω , we must modify our Prikry
forcing:

Interleave our ω sequence with conditions from Levy collapses,
so that γn in our ω-sequence becomes ℵk+n for some
conveniently fixed k ∈ ω.
k chosen to give adequate closure in our forcings.
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A further result

Theorem
(H.) It is consistent with ZFC and the existence of a cardinal which
is measurable and subcompact that κ is singular and �κ,2 holds
while �κ fails.

This is similar to a more general result by Cummings, Foreman
& Magidor at ℵω which requires a supercompact.
Purpose of this result is to separate out these square principles.

We have from ZFC that �κ →�κ,2

(Schimmerling-Zeman) In models of the form L[~E ], κ not
subcompact iff �κ holds iff �κ,<κ holds.

The argument builds upon earlier work of Jensen.

Ryan Holben Square at Singular Cardinals



Set Theory Basics
Singular Cardinal Combinatorics

Results

First result
Second result
Future work

A further result

Theorem
(H.) It is consistent with ZFC and the existence of a cardinal which
is measurable and subcompact that κ is singular and �κ,2 holds
while �κ fails.

This is similar to a more general result by Cummings, Foreman
& Magidor at ℵω which requires a supercompact.
Purpose of this result is to separate out these square principles.

We have from ZFC that �κ →�κ,2

(Schimmerling-Zeman) In models of the form L[~E ], κ not
subcompact iff �κ holds iff �κ,<κ holds.

The argument builds upon earlier work of Jensen.

Ryan Holben Square at Singular Cardinals



Set Theory Basics
Singular Cardinal Combinatorics

Results

First result
Second result
Future work

A further result

Theorem
(H.) It is consistent with ZFC and the existence of a cardinal which
is measurable and subcompact that κ is singular and �κ,2 holds
while �κ fails.

This is similar to a more general result by Cummings, Foreman
& Magidor at ℵω which requires a supercompact.
Purpose of this result is to separate out these square principles.

We have from ZFC that �κ →�κ,2

(Schimmerling-Zeman) In models of the form L[~E ], κ not
subcompact iff �κ holds iff �κ,<κ holds.

The argument builds upon earlier work of Jensen.

Ryan Holben Square at Singular Cardinals



Set Theory Basics
Singular Cardinal Combinatorics

Results

First result
Second result
Future work

A further result

Theorem
(H.) It is consistent with ZFC and the existence of a cardinal which
is measurable and subcompact that κ is singular and �κ,2 holds
while �κ fails.

This is similar to a more general result by Cummings, Foreman
& Magidor at ℵω which requires a supercompact.
Purpose of this result is to separate out these square principles.

We have from ZFC that �κ →�κ,2

(Schimmerling-Zeman) In models of the form L[~E ], κ not
subcompact iff �κ holds iff �κ,<κ holds.

The argument builds upon earlier work of Jensen.

Ryan Holben Square at Singular Cardinals



Set Theory Basics
Singular Cardinal Combinatorics

Results

First result
Second result
Future work

A further result

Theorem
(H.) It is consistent with ZFC and the existence of a cardinal which
is measurable and subcompact that κ is singular and �κ,2 holds
while �κ fails.

This is similar to a more general result by Cummings, Foreman
& Magidor at ℵω which requires a supercompact.
Purpose of this result is to separate out these square principles.

We have from ZFC that �κ →�κ,2

(Schimmerling-Zeman) In models of the form L[~E ], κ not
subcompact iff �κ holds iff �κ,<κ holds.

The argument builds upon earlier work of Jensen.

Ryan Holben Square at Singular Cardinals



Set Theory Basics
Singular Cardinal Combinatorics

Results

First result
Second result
Future work

A further result

Theorem
(H.) It is consistent with ZFC and the existence of a cardinal which
is measurable and subcompact that κ is singular and �κ,2 holds
while �κ fails.

This is similar to a more general result by Cummings, Foreman
& Magidor at ℵω which requires a supercompact.
Purpose of this result is to separate out these square principles.

We have from ZFC that �κ →�κ,2

(Schimmerling-Zeman) In models of the form L[~E ], κ not
subcompact iff �κ holds iff �κ,<κ holds.

The argument builds upon earlier work of Jensen.

Ryan Holben Square at Singular Cardinals



Set Theory Basics
Singular Cardinal Combinatorics

Results

First result
Second result
Future work

Methods

We do a preparation forcing involving:

A carefully chosen Easton support iteration
Our iteration add and then thread �α,2 sequences for many
α < κ.
Easton allows us to factor our forcing in useful ways, and
extend our subcompactness map to forcing extensions.

Preparation done in a way that preserves measurability.
Follow with an ordinary Prikry forcing.
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Future work

We would like to modify our Prikry forcing in our second
theorem to get a model of

�ℵω ,2+¬�ℵω

Would like to generalize to

�ℵω ,n+1+¬�ℵω ,n

This has been shown by Cummings, Foreman & Magidor
starting with a supercompact cardinal and 2κ+ω

= κ+ω+1 .

Tackle the consistency strength of the failure of global square
at singulars, etc.
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